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In this paper we describe the implementation and development of a new Taylor–
Galerkin finite-element scheme within an unstructured/hybrid, parallel solver. The
scheme has been specifically conceived for unsteady LES: it is third-order in space
and time and has a low dissipative error. Minimal additional CPU costs are achieved
by using a new approximation of the finite-element integrals and a simple iterative
method for the approximate inversion of the modified mass matrix. Basic convective
tests are carried out in 2 and 3 dimensions for arbitrary elements. Numerical estimates
of the order of convergence are presented on regular and perturbed grids. Finally,
test cases that are relevant to LES are carried out, and these clearly demonstrate the
important improvements that our new scheme offers relative to a selection of existing
methods. c© 2000 Academic Press
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1. INTRODUCTION

For large eddy simulations of turbulence (LES), the quality of a computation is known
to be as dependent on the accuracy of the numerical scheme and the computational mesh as
on the LES model itself [1]. A poor mesh resolution and the use of a low-order scheme can
contribute dramatically to the dissipation of eddies (through numerical dissipation errors)
and to the distortion of their form (through numerical dispersion errors). For complex
geometries, when unstructured or structured multi-block grids are required, the simplest and
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most common way to achieve the required level of accuracy is to use a relatively low-order
finite-volume or finite-element scheme with a very fine mesh (see, e.g., [2]). Although the
results of such computations may be impressive, the approach can be extremely costly.

This requirement for accuracy leads us to consider high-order methods, since the total cost
of a calculation is likely to be lower if we increase the order of the numerical scheme rather
than increasing the number of mesh points used. Indeed, the argument becomes even more
convincing for three-dimensional problems. In practice, however, we need to ensure that the
computational overhead generated by the high-order scheme is reasonably low. High-order
spectral [3] or finite-difference [4] methods for structured grids have been successful for
simple geometries because the overhead is small compared to the gain in accuracy. Related
schemes have been generalized to unstructured meshes (e.g., [5]), but they become much
more expensive due to the high-order quadrature that is needed and/or the increased CPU
overheads associated with the larger stencils required.

For convection problems, third- or fourth-order Galerkin/Runge–Kutta finite-element
schemes that use linear elements and Runge–Kutta time-stepping may easily be derived
(we denote these as G/RK3 and G/RK4, respectively). Despite their simple formulation,
these schemes suffer from some important shortcomings, namely that their accuracy drops
dramatically on distorted meshes, and they do not dissipate node-to-node oscillations which
may lead to spurious wave packets and cause instabilities on highly irregular meshes [6].
To some extent, both problems may be alleviated using an artificial viscosity method [7],
although the definition of suitable models is not straightforward, and those used in the
literature are often too dissipative for unsteady applications.

Of all of the finite-element schemes [8], the Taylor–Galerkin (TG) family seems to
be one of the best candidates for obtaining third (or higher) order at a reasonable cost, as
well as being suitable for nonlinear problems in higher space dimensions. Such schemes are
generally less dissipative than common implementations of SUPG/Petrov–Galerkin or least-
square schemes. Taylor–Galerkin schemes were originally derived by Donea [9] and have
been extensively used for CFD computations over the last two decades. Donea [9] performed
third- and fourth-order temporal Taylor expansions within the Galerkin formulation that led
to a one-step third-order scheme called Euler–Taylor–Galerkin (ETG). This scheme was
generalized to two-step schemes of third- and fourth-order (TTG3, TTG4A, TTG4B) by
Quartapelle and Selmin [10]. Unlike the G/RK3 scheme, all of these schemes exhibit leading
order dissipative terms which naturally damp node-to-node oscillations. However, they are
more dissipative than G/RK3 across the whole frequency spectrum. Recent work by Oden
et al.[11, 12] has demonstrated how Taylor–Galerkin schemes of order “2s” may be defined
using “s” stages to achieve unconditional stability. Although these schemes may prove to
be useful, they are not considered here because of the complexity and the cost involved in
using adaptative hp-finite-elements.

In the present paper we shall describe a third-order Taylor–Galerkin approach for con-
vective terms, that is both simple, effective, and, most importantly, well-suited for LES.
The basic idea of LES is to resolve large-scale turbulent structures, which are dynamically
more important, and then to simulate the action of scales smaller than the mesh size by an
appropriate eddy viscosity model (see [13] for a review of such models). For an ideal LES
calculation it is the combination of laminar and LES viscosity that is supposed to be the
sole mechanism for the transfer of energy to the sub-grid level through the dissipation of
high frequencies. Unfortunately many schemes exhibit large amounts ofnumericaldiffu-
sion at high frequencies and this can have a disastrous effect on LES since it allows energy
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to be transferred independently of the LES model itself. As a result, a convective scheme
that is well-suited to LES must have minimal dissipation at high frequencies. Fortunately,
high-frequency dispersive errors have a much smaller effect on any larger-scale structures:
these modes have very short life-spans as they are effectively dissipated by turbulent vis-
cosity and so are convected over relatively short distances. On the other hand the large scale
structures themselves must be convected with both low dispersive and dissipative errors.
For practical evidence of this, see Morinishi [14], who shows that non-dissipative schemes
perform better than dissipative schemes on turbulent LES channel flow calculations.

Finally, we note that our aim is to compute turbulent flows in complex geometries using
an existingparallel solver [15], and so our approach has been reasonably pragmatic: the
algorithm needed to be scalable and very easy to implement within a distributed-memory
environment (requiring a compact stencil, and avoiding the use of state-of-the-art iterative
solvers which would be needed to ensure scalability when inverting any complicated sparse
matrix systems); it also needed to be applicable to arbitrary element types. The overall
design constraint was that the cost per time-step had to be limited to two or three times that
of the existing second-order cell-vertex finite-volume schemes that are described in [15].

The format of the paper is as follows. In Section 2 we describe the Taylor–Galerkin
(TG) schemes of Donea, Selmin, and Quartapelle and propose a new scheme for the one-
dimensional advection equation that is suitable for the type of application we have in mind.
In Section 3 we generalize these TG schemes for the Euler equations in two and three di-
mensions. We explain how the integrals appearing in the formulation can be approximated
by an original method that is cheaper than well-known quadrature approaches, while main-
taining discrete conservations. In Section 4 we give numerical results for basic convection
problems. Numerical estimates of the order of accuracy of these schemes are given, and
we describe basic test cases relating to 3D homogeneous isotropic turbulence. As the aim
of the paper is to describe the scheme in detail, we do not consider the implementation of
boundary conditions or give results for more challenging test cases, although we intend to
report on this in future publications.

2. TAYLOR–GALERKIN SCHEMES FOR THE ONE-DIMENSIONAL

ADVECTION EQUATION

2.1. The ETG Scheme

The Euler–Taylor–Galerkin (ETG) scheme was the first third-order TG scheme proposed
by Donea [9]. We derive it here for the 1D advection equation,

ut = −cux, x ∈ Ä, (1)

wherec is a constant, and suitable initial and boundary conditions are imposed. The method
is based on a third-order Taylor expansion in time,

un+1− un

1t
= un

t +
1t

2
un

tt +
1t2

6
un

ttt + O(1t3), (2)

which is that used by the classical Lax–Wendroff scheme with a third derivative term added
on the right-hand side. The second derivativeutt is replaced by a second derivative in space
using Eq. (1) twice,

utt = (−cux)t = −c(ut )x = c2uxx. (3)
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The third-order derivative is then approximated in a hybrid manner using forward Euler
time-stepping,

uttt = c2(ut )xx ' c2

(
un+1− un

1t

)
xx

. (4)

After replacing all temporal derivatives by spatial derivatives, this results in the semi-discrete
form, (

1− c21t2

6
∂xx

)(
un+1− un

1t

)
= − cun

x +
c21t

2
un

xx. (5)

To obtain a fully discrete approximation, the Galerkin method is applied to the above
equation,〈(

1− c21t2

6
∂xx

)(
un+1− un

1t

)
, φi

〉
=
〈
−cun

x +
c21t

2
un

xx, φi

〉
, (6)

where〈a, b〉 denotes theL2 inner product
∫

ab dV, andφi is a test function taken from a
suitably chosen finite-element subspace. AP1 finite element approximation is obtained by
integrating (6) by parts and choosing piecewise linear functions satisfying

φ j (xi ) = δi j∑
j

8 j (x) = 1, ∀ x ∈ Ä,

wherexi = x0+ i1x denotes a mesh coordinate (limiting our present discussion to regular
meshes). This finally gives the discrete scheme for the nodal valuesUn

j ,

[
M − C2

6
δ2

](
Un+1

j −Un
j

) = −C10U
n
j +

1

2
C2δ2Un

j , (7)

whereC= c1t/1x is the Courant number,10, δ
2 are the centred first- and second-order

spatial differencing operators, and M is the mass-matrix,

10U j = 1

2
(U j+1−U j−1) (8)

δ2U j = U j+1− 2U j +U j−1 (9)

MU j = 1

6
(U j+1+ 4U j +U j−1). (10)

2.2. TTG3 and TTG4A Schemes

In [16], Doneaet al.carried out the 2D stability analysis of the ETG scheme for bilinear
elements. They found that although the CFL condition readsC< 1 in 1D, it becomesC< 1

2
in 2D andC< 1

3 in 3D, whereC is now the CFL number based on the wave speed in a given
direction and the maximum distance across the cell in that direction. To overcome this,



342 COLIN AND RUDGYARD

Selmin and Quartapelle [10, 17], proposed a family of two-step Taylor–Galerkin schemes
called TTG. These are derived from the two-step approximation

ũn = un + 1

3
1tun

t + α1t2un
tt , (11)

un+1 = un +1tun
t +

1

2
1t2ũn

tt , (12)

which also avoids the need for a modified mass matrix such as that found in the ETG scheme
(7). On regular meshes,α= 1

9 gives a third-order scheme called TTG3 whose phase error
is exactly that of the ETG scheme; the choiceα= 1

12 gives a fourth-order scheme called
TTG4A. The stability limit isC< 0.854 for TTG3 andC< 1 for TTG4A for all dimensions.
Thus, the higher cost per time-step of these two-step methods may be off-set by the larger
time-step that is allowed. Quartapelle and Selmin also carried out 1D and 2D test cases in
[10] and showed that the TTG schemes give solutions that are very similar to those of the
ETG scheme.

2.3. TTGC Schemes

Unfortunately, we have found that the ETG and TTG schemes are too dissipative at inter-
mediate and high frequencies and that these schemes are therefore unsuitable for practical
LES applications. As a result, a new class of two-step Taylor–Galerkin schemes has been
developed that gives third-order accuracy with less overall dissipation.

We consider the six parameter family of schemes,

ũn = un+α1tun
t + β1t2un

tt , (13)

un+1 = un +1t
(
θ1un

t + θ2ũn
t

)+1t2
(
ε1un

tt + ε2ũn
tt

)
. (14)

We note that it is possible to move the second-order derivative terms of (13) and (14) to
the left-hand side and to treat these terms within a modified mass matrix, in a manner
analogous to the definition of the ETG scheme or the multi-step schemes derived by Oden
et al. [11, 12]. This approach can lead to fourth-order schemes, and even unconditionally
stable schemes, although it can be much more expensive to implement and so will not be
considered here.

After discretising the above equations using linear elements and the Galerkin scheme,
we perform a Fourier transform which gives the amplification factor

z̃(p) = 1+ 1

M̂
(−αC1̂0+ βC2δ̂2), (15)

z(p) = 1+ 1

M̂
(−(θ1+ θ2z̃)C1̂0+ (ε1+ ε2z̃)C2δ̂2), (16)

where1̂0, δ̂
2, M̂ , are the Fourier transforms of10, δ

2,M given by the equations (see (8),
(9), and (10))

1̂0(p) = I sin(p),

δ̂2(p) = −4

(
sin

(
p

2

))2

,

M̂(p) = 1− 2

3
sin

(
p

2

)2

,
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andp= k1x is the non-dimensional frequency. A Taylor expansion to third order inp gives

z(p) = 1− a1ICp− a2C2 p2+ a3IC3 p3+ o(p3), (17)

with

a1 = θ1+ θ2,

a2 = ε1+ ε2+ α(1− θ1),

a3 = 1

2
α(1− 2ε1)+ (1− θ1)(β − α2),

and we note that a third-order accurate scheme requires the coefficientsai to satisfyai = 1
i !

for i = 1, 2, 3. Clearly, the two-step Taylor–Galerkin schemes described in Subsection 2.2
satisfy these conditions—for instance, the TTG4A scheme is defined byα= 1

3, β = 1
12, θ1=

1, θ2= 0, ε1= 0, andε2= 1
2.

We now have three equations and six free parameters, and so additional constraints need
to be imposed. The dissipative property of the scheme can be assessed by determining the
dissipation of the amplification factor at the highest mesh frequencyp=π . In this case, we
have

1̂0(π) = 0, δ̂2(π) = −4, M̂(π) = 1

3

andz(π) is given exactly by

z(π) = 1− 12C2[ε1+ ε2(1− 12βC2)].

It can be seen that settingε1= ε2= 0 leads to no dissipation at all for this mode(z(π)= 1),
as is the case for well-known Galerkin/Runge–Kutta schemes. Thus, at least one of these two
coefficients has to be non-zero in order to keep a minimum dissipation at high frequencies.

As our aim is to derive a third-order scheme that is as cheap as possible, with less
dissipation than those described in the previous section, we make the following choices:

• We demand that the second derivative termutt be calculated only once per time-step.
If we wish to keep a dissipative-like term at both steps of the iteration,β cannot be zero so
utt has to be calculated during the first step andε2 can be set to zero.
• We impose the conditionθ1= 0 since we also wish to avoid the additional cost of

storingun
t from step one to step two (it may also be shown thatθ1 has little practical effect

on the phase and dissipative properties of the scheme).

Settingγ = ε1, with θ1= 0 andε2= 0, the three initial constraints now become

α = 1

2
− γ, β = 1

6
, (18)

and the two-step scheme reads

ũn = un + α1tun
t + β1t2un

tt , (19)

un+1 = un +1t ũn
t + γ1t2un

tt . (20)

Equations (19) and (20) define a family of schemes that depend on a single parameterγ ,
which may be interpreted as a measure of the dissipation at high frequencies, as shown by
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FIG. 1. Dissipation error of different TTGC schemes at CFL= 0.1.

the amplification factor at the maximal frequencyp=π ,

z(π) = 1− 12γC2.

As γ tends to zero, the dissipation of high frequency modes also tends to zero, as shown
graphically in Fig. 1. Ifγ = 0, the second step of the scheme is formally identical to a step
of a multi-step Galerkin scheme, leading to the node-to-node oscillations discussed in the
Introduction. Figure 2 shows that the dispersion error is nearly independent ofγ , at least at
low CFL numbers. Figure 3 shows the maximum CFL condition in 1D forγ ∈ [0, 1]. It can
be seen that in practice only small values ofγ (0<γ ≤ 0.2) lead to acceptable CFL limits.
Negative values ofγ lead to an instable scheme.

FIG. 2. Dispersion error of different TTGC schemes at CFL= 0.1.
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FIG. 3. TTGC(γ ) stability domain for the 1D advection equation withγ ∈ [0, 1].

Finding a singleoptimalvalue forγ across all CFL numbers has not been addressed in
the present work because it is somewhat difficult to define precisely what is meant by this
in the context of LES calculations (where dissipation is needed for non-linear stability but
an excess of dissipation strongly degrades the turbulence characteristics).

Numerically, we have found that 0<γ ≤ 0.05 gives a much less dissipative scheme than
FV/LW, ETG, or TTG4A over the whole frequency spectrum for small CFL numbers (as
can be seen in Fig. 4) whereas it is comparable to other third-order TG schemes for high
CFL numbers and long to intermediate wavelengths (see Fig. 5). Nonetheless, forγ >0 the
scheme remains more dissipative at high frequencies than the three-step Galerkin scheme,
as shown by the numerical tests of Section 4. The dispersion error is very similar to that
of other TG schemes, especially at low CFL numbers (see Figs. 6 and 7) and brings a

FIG. 4. Dissipation error of LW and TG schemes at CFL= 0.1.
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FIG. 5. Dissipation error of LW and TG schemes at CFL= 0.7.

clear improvement over FV/LW or FV/RK3 schemes. In the following we will denote the
generic formulation as TTGC (following the naming convention adopted for the TTG4A and
TTG4B schemes of Quartapelleet al.); TTGC(γ ′) will refer to the particular caseγ = γ ′.

3. MULTI-DIMENSIONAL TTG SCHEMES FOR THE EULER EQUATIONS

3.1. General Formulation

We now consider the three-dimensional Euler equations written in conservative form,

ut +∇ · F = 0 (21)

FIG. 6. Dispersion error of LW and TG schemes at CFL= 0.1.
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FIG. 7. Dispersion error of LW and TG schemes at CFL= 0.7.

with uT = (ρ, ρu1, ρu2, ρu3, ρE), whereρ is the density,qT = (u1, u2, u3) denotes the
velocity field, E is the total energy per unit mass, andF = (f, g, h) is the 5× 3 matrix of
inviscid fluxes. Replacing the temporal derivatives of Eqs. (19) and (20) using (21) and

utt = −(∇ · F)t = −∇ · Ft = ∇ · ((A, B,C)ut ), (22)

whereA, B,C are the 5× 5 flux Jacobians,

A(u) = ∂ f

∂u
, B(u) = ∂g

∂u
, C(u) = ∂h

∂u
, (23)

we finally obtain

ũn = un − α1t∇ · Fn + β1t2∇ · [(A, B,C)(∇ · Fn)], (24)

un+1 = un −1t∇ · F̃n + γ1t2∇ · [(A, B,C)(∇ · Fn)], (25)

where the divergence∇ · F = fx + gy+ hz is a 5× 1 matrix and (A, B,C)(∇ · F)=
(A∇ · F, B∇ · F,C∇ · F) is a 5× 3 matrix.

After applying the Galerkin method to Eqs. (24) and (25) and integrating the second-order
operator by parts, the scheme becomes∫

Ä

R̃n8i dV = −αLi (U
n)− β1t LLi (U

n), (26)∫
Ä

Rn+18i dV = −Li (Ũ
n)− γ1t LLi (U

n), (27)

with

R̃n = Ũ n −Un

1t
,

Rn+1 = Un+1−Un

1t
,

Li (U
n) =

∫
Ä

∇ · F(Un)8i dV, (28)
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LLi (U
n) =

∫
Ä

(A, B,C)∇ · F(Un)∇8i dV−
∫
∂Ä

8i (A, B,C)∇ · F(Un) dS, (29)

where the surface vectordSis 3× 1 matrix and we have chosen suitable scalar test functions
8i . U, Ũ are expressed as a sum of these test-functions, e.g.,

Un(x) =
∑

j

8 j (x)U
n
j ,

(30)
Rn(x) =

∑
j

8 j (x)R
n
j ,

and the left-hand side of (26) then becomes∫
Ä

R̃n8i dV =
∑

j

(∫
Ä

8i8 j dV

)
R̃n

j

=
∑

j

Mi j R̃n
j .

The TTG scheme may be rewritten in matrix form, withUn, Ũ n, R̃n, Rn+1 now designating
the vectors of nodal values, and M the mass-matrix,

M R̃n = H̃(Un), (31)

M Rn+1 = H(Un, Ũ n), (32)

with H andH̃ defined as

H̃(Un) = −αL(Un)− β1t LL(Un),

H(Un, Ũ n) = −L(Ũ n)− γ1t LL(Un).

As the CFL condition for TTGC is less than one, the number of time-steps required by
a typical LES will be very large. This makes the CPU cost per iteration a crucial factor for
this scheme, as for all explicit time-stepping schemes. The exact inversion of the (positive-
definite) mass-matrix M would involve storing a large full matrix and is therefore not of prac-
tical interest, especially for unstructured meshes; instead we report to approximate inversion
techniques using a very simple iterative method. In [9], Donea proposed a two-step explicit
version which remains third-order and nearly preserves the phase accuracy of the original
one-step implicit version. This involves approximating the matrix inversion by the well-
known Jacobi method. Similarly, thep-step explicit version of the TTGC scheme becomes

(R̃n)(0) = D−1H̃(Un),

(R̃n)(k) = (R̃n)(0) − D−1(M − D)(R̃n)(k−1), k = 1, p,
(33)

(Rn+1)(0) = D−1H
(
Un, (Ũ n)(p)

)
,

(Rn+1)(k) = (Rn+1)(0) − D−1(M − D)(Rn+1)(k−1), k = 1, p,

where D is the diagonally lumped mass matrix,

Dii =
∑

j

Mi j ,

Di j = 0 for i 6= j .
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Note that we have chosen to use the mass-lumped matrix and not the diagonal ofM be-
cause it may be shown that convergence is assured on arbitrary (tetrahedral) meshes when
the mass-lumped matrix is used [18]. An alternative to this approach would be to use a
diagonally preconditioned conjugate-gradient technique [19], which also has favourable
convergence properties for this problem and avoids the need to store a pre-conditioning
matrix, although it is slightly more costly to implement due to the additional vector–vector
products that are required.

Since the other TG schemes, as well as the G/RK3 scheme, may also be expressed as
linear combinations of the operatorsL andLL, the implementation of this family of schemes
is straightforward and similar techniques may be used in all cases. By performing a Fourier
analysis following [9], we may show analytically that all of the schemes remain third-order
accurate when the mass-matrix is inverted approximately using one or more steps of Jacobi,
at least for regular infinite meshes. For the multi-dimensional Euler equations, no analytical
proof of the order is given here, although the numerical estimate of the order presented in
Subsection 4.1 shows that third order is still attained on regular meshes. Indeed, we shall
demonstrate that only two iterations(p= 2) are required to obtain solutions that are very
close to those given by exact matrix inversion. Figures 8 and 9 illustrate this by comparing
dispersion and dissipation errors for the one-dimensional problem (the reader should note
the vertical scale of Fig. 9).

3.2. Application to Linear and Bilinear Elements

The practical computation of the operatorsL andLL can be done element by element,

Li (U
n) =

∑
c,i∈Äc

Li (U
n)|c,

LLi (U
n) =

∑
c,i∈Äc

LLi (U
n)|c,

FIG. 8. Dispersion error for nJacTTGC(0.01) scheme at CFL= 0.1.
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FIG. 9. Dissipation error for nJacTTGC(0.01) scheme at CFL= 0.1.

where

Li (U
n)|c =

∫
Äc

8i∇ · F dV,

LLi (U
n)|c =

∫
Äc

8i x A∇ · F dV +
∫
Äc

8iy B∇ · F dV +
∫
Äc

8i zC∇ · F dV.

However, their exact evaluation involves the continuous functionsF(Un), A(Un), B(Un),
andC(Un) defined over each elementÄc, recalling thatUn itself is a linear combination
of the test-functions (see Eq. (30)). For the Euler equations, the Jacobians and the flux
are complicated nonlinear functions of U and so it is convenient to make the following
approximations:

• We use a product approximation to express the fluxF as a sum of test-functions,

Fn(x) =
∑

j

8 j (x)F
n
j , (34)

which gives

∇ · Fn(x) =
∑

j

Fn
j ∇8 j (x).

• The Jacobians are taken to be constant over each element and are approximated
using the average value of the vertex valuesUn

j , j ∈Äc. Note that this approximation only
appears in theLL term.

The expressions forL andLL can then be simplified,

Li (U
n)|c =

∑
j∈Äc

Fj2i j |c, (35)
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LLi (U
n)|c =

∑
j∈Äc

(
AFj

∫
Äc

8i x∇8 j dV+ BFj

∫
Äc

8iy∇8 j dV+C Fj

∫
Äc

8i z∇8 j dV

)

= (A, B,C)

(∑
j∈Äc

Fj9i j |c
)
, (36)

where2 and9 are defined over each element as

2i j |c =
∫
Äc

8i∇8 j dV, (37)

9i j |c =
∫
Äc

∇8 j (∇8i )
T dV. (38)

For quadrilaterals in 2D, or prisms, pyramids or hexahedra in 3D, the test-functions ap-
pearing in the above integrals may be expressed as bilinear or trilinear polynomials of the
canonical coordinates̃x of some reference element in computational space, whereas they
can be fractional polynomials of the original coordinates x. They are therefore calculated
over the reference elementÄ̃c by using the transformation

R : Ä̃c → Äc,

x̃ → x =
∑

i

xi8i (x̃),

and (37) and (38) then become

2i j |c =
∫
Ä̃c

8i T∇8 j dV, (39)

9i j |c =
∫
Ä̃c

|P|−1T∇8 j∇8T
i TT dV, (40)

whereP= ∂x
∂ x̃ is the Jacobian of the transformationR, andT = |P|(PT )−1.

3.2.1. Linear formulation. In the case of triangular or tetrahedral elements, the test-
functions are linear functions of the coordinates and the transformationR is itself linear
(i.e., P is constant). Consequently,T and∇8i are constant over each element and can be
taken out of the integrals (39) and (40). Then we have

∇8 j = − Nj

DVc
, (41)

where the 3× 1 matrix Nj is the outward normal to the face opposite to nodej , scaled by
the surface area of the face;D is the space dimension andVc is the volume of the element.
The integral of the test function itself reduces to∫

Äc

8 j dV = Vc

Ic
, ∀ j ∈Äc (42)

whereIc is the number of vertices in the elementÄc: 3 for triangles, 4 for tetrahedra. Finally,
Lc

i andLLc
i take the simple forms

Li (U
n)|c = Vc

Ic
(∇ · F)c, (43)

LLi (U
n)|c = − 1

D
(A, B,C)(∇ · F)cNi , (44)
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where

(∇ · F)c = − 1

DVc

(∑
j εÄc

Fj Nj

)
. (45)

Although the expressions (43) and (44) correspond to the exact integration of (39) and (40),
we note that these expressions are exactly those used in our basic finite-volume solver [20].

3.2.2. Bi/tri-linear formulation. In the case of bi/tri-linear elements such as quadrilat-
erals, prisms, pyramids, and hexahedra,T and∇8i are no longer constant within each cell,
and so these cannot be taken out of the integrals (39) and (40). Their approximate inte-
gration is commonly performed using quadrature, although this can be expensive (simple
one-point quadrature is not considered as this leads to spurious solution modes, whereas a
full 2× 2× 2 quadrature would require nearly eight times as much work as the former); care
must also be taken in order to maintain the essential property of discrete flux conservation.
The solution adopted here is to consider both T and|P| to be constant over each element, as
in the linear case. The approximation is based on the fact that T and|P| are indeed constant
when the element is regular, that is, for parallelograms in 2D or parallelepipeds in 3D. For
irregular elements, we need to define some average of T and|P|, denotedT̄ and |P̄|. In
the present work, we have chosenT̄ = T(xG) wherexG is the barycentre of the element.
Similarly, |P̄| is defined∫

Äc

1dV =
∫
Ä̃c

|P| dṼ ' |P̄|
∫
Ä̃c

dṼ .

As we have arbitrarily chosen
∫
Ä̃c

dṼ = Ic, we find

|P̄| = Vc/Ic.

In order to guarantee the conservation property (see the Appendix for the proof) we split
2i j into two terms,

2i j |c = 2(0)
i j

∣∣
c
+2(1)

i j

∣∣
c
,

where

2
(0)
i j

∣∣
c =

∫
Äc

8i∇8 j dV, (46)

2
(1)
i j

∣∣
c
=
∫
Äc

8i (∇8 j − ∇8 j ) dV, (47)

and

∇8 j = 1

Vc

∫
Äc

∇8 j dV = 1

Vc

∫
Ä̃c

T∇8 j dṼ .

We now define

∇8 j = 1

Vc
T̄
∫
Ä̃c

∇8 j dṼ (48)

and note that for regular elements

∇8 j = ∇8 j = (∇8 j )FV,
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with

(∇8 j )FV = 1

Vc

∫
∂Äc

8 j dS. (49)

For irregular elements with non-coplanar quadrilateral faces, we define (∇8 j )FV to be an
approximation of the surface integral of (49). This involves triangulating the face, assum-
ing linear variation of8 over the triangle, and then taking the mean of the two possible
triangulations [20]. We then approximate∇8 j by (∇8 j )FV in Eq. (46), and by∇8 j in
Eq. (47),

2
(0)
i j

∣∣
c
'
(∫

Äc

8i dV

)
(∇8 j )FV,

2
(1)
i j

∣∣
c ' T̄2̃(1)

i j ,

where2̃(1)
i j is defined over the reference element,

2̃
(1)
i j =

∫
Ä̃c

8i (∇8 j − |P̄|T̄−1∇8 j ) dṼ (50)

=
∫
Ä̃c

8i

(
∇8 j − 1

Ic

∫
Ä̃c

∇8 j dṼ

)
dṼ . (51)

In the same manner9i j is approximated usinḡT and|P̄|,

9i j |c ' |P̄|−1T̄9̃i j T̄
T ,

9̃i j =
∫
Ä̃c

∇8 j∇8T
i dṼ .

9̃i j , like 2̃(1)
i j , can be calculated once and for all for each element type, since it does not

depend on the mesh coordinates.T̄ , however, must be calculated for each element. When
replacing2i j |c and9i j |c by their approximate expressions in Eqs. (35) and (36),Li and
LLi become

Li (U
n)|c = Vc

Ic

(∫
Ä̃c

8i dṼ

)
(∇ · F)FV+

∑
j

Fj T̄2̃i j , (52)

LLi (U
n)|c = Ic

Vc
(A, B,C)

(∑
j

Fj T̄9̃i j T̄
T

)
, (53)

where

(∇ · F)FV ≈ 1

Vc

∫
∂Äc

F dS,

the latter being evaluated using an approach similar to that defined for (49) above.
In the case of regular elements such as parallelopipeds, expressions (52) and (53) are

the exact finite-element integrals appearing in Eqs. (28) and (29). On irregular elements,
these expressions are only approximations of the exact finite-element formulation, but the
numerical tests of the next section show that they do not appear to affect the quality of the
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solutions in a significant manner, at least for practical mesh resolutions. Following similar ar-
guments, we have approximated the mass-matrix(

∫
Äc
8i8 j dV) by (Vc/Ic)(

∫
Ä̃c
8i8 j dṼ),

the expressions being identical for linear or regular, bilinear elements.

4. NUMERICAL RESULTS

4.1. Linear Test-Case

As a first test-case for the numerical evaluation of our scheme, a Gaussian pulse of density
is convected in a uniform velocity field in two or three dimensions. Note that this test is
strictly equivalent to the three-dimensional version of the convection equation (1), since
the Jacobian matrices are constant and the vector equations degenerate to a single scalar
equation. In 3D, the initial solution reads

ρ = 1+ exp(−100|r |2),
u1 = u2 = u3 = 1,

E = p

ρ(γ − 1)
+ 1

2
|q|2,

where the pressurep is uniform over the whole domain,γ = 1.4, andr denotes the radius
from the centre of the domain.

This pulse of density is initialized at timet = 0 in the centre of the unit periodic box
(x∈ [0, 1]D) discretised byND mesh points (D= 2 or 3), and thus recovers its initial
position at timen, n an integer.

We present in Fig. 10 the density profile at time 1 on a hexahedral mesh of size 213

calculated with TTGC(0.01). This figure shows the solution on a 1D cut in the direction of
propagation, i.e., between points (0, 0, 0) and (1, 1, 1) of the unit cube. All calculations with
finite-element schemes are performed with the approximate inversion of the mass-matrix
as described above. The TTGC scheme is therefore denoted as 2JacTTGC when 2 Jacobi
iterations are performed, and similarly for the other schemes. The improvement obtained by
performing two iterations of the Jacobi method instead of one is obvious in this figure; six
iterations offer an even better solution but at a much higher cost. For all the following results
we have therefore used two Jacobi iterations as a compromise between cost and accuracy.

Figure 11 compares the different schemes on the same mesh. We note that the dissipation
and dispersion errors for third-order finite-element schemes are much smaller than those
of the second-order Lax–Wendroff finite-volume scheme (FV/LW) [20] and the three-step
Runge–Kutta finite-volume scheme (FV/RK3). Clearly, the particularly poor results ob-
tained with the latter schemes are due to the relatively coarse mesh resolution of the pulse.
TTG4A is the most dissipative FE scheme followed by TTGC(0.01) and G/RK3, as expected
from Fig. 4. The phase accuracy on the other hand is quite similar for all FE schemes, as can
be seen from Fig. 6. This calculation has also been carried out with different connectivities
on a perturbed mesh (tetrahedra, pyramids, and prisms) without any significant change in
the quality of the solution, as can be seen in Fig. 12. This perturbed mesh was generated
by randomly moving the mesh points of the regular grid within circles of maximal radius
0.2251x. A 512 quad mesh is shown in Fig. 15 with the same level of perturbation and the
solution obtained with this mesh is shown in Figs. 14 and 16. This calculation shows that the
approximations used for bi/tri-linear elements do not negatively influence the solution in a



FIG. 10. Convection of a Gaussian pulse of density on a 213 hexahedral mesh.

FIG. 11. Convection of a Gaussian pulse of density on a 213 hexahedral mesh.
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FIG. 12. Convection of a Gaussian pulse of density on a perturbed 213 mesh with different connectivities.

FIG. 13. Convection of a Gaussian pulse of density on a regular 51× 51 quadrilateral mesh.

356
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FIG. 14. Convection of a Gaussian pulse of density on a perturbed 51× 51 quadrilateral mesh.

significant manner when irregular elements are used, at least for realistic mesh resolutions.
The result obtained with a hybrid mesh composed of hexahedra and prisms is qualitatively
similar to that obtained on a non-hybrid mesh, indicating that the use of hybrid elements
does not necessarily degrade the solution accuracy for unsteady calculations.

In order to obtain a more quantitative comparison of the different schemes, we have also
undertaken tests to compute their approximate orders of accuracy. TheL2 norm of the error
versus the mesh spacing1x is shown in Figs. 17 and 18, for both perturbed and regular
quadrilateral meshes of sizes 152, 312, 512, 1012, and 1512. Similar tests were undertaken
for triangles, using the same node distribution, as shown in Figs. 19 and 20. Table I gives
the slope of the regression line which best fits the error for all of the mesh sizes considered.

TABLE I

Order Measurement for the Convection of a Gaussian Pulse

of Density in Two Dimensions

2JacTTGC 2JacTTGC
Scheme LW 2JacTTG4A (0.01) (0.05) 2JacG/RK3

Regular quad 0.8 2.7 3.5 3.7 3.6
Perturbed quad 0.74 2.1 1.3 1.7 0.87
Regular triangles 0.8 2.7 3.1 3.0 3.0
Perturbed triangles 0.8 2.4 1.8 2.1 1.4
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FIG. 15. A 512 perturbed quad mesh: (a) whole mesh, (b) detail.

Since we consider relatively coarse meshes as well much finer meshes, the slope may be
interpreted as an average rate of convergence over a realistic range of mesh resolutions
rather than an estimate of the order as1x→ 0. However, in some cases (notably the regular
mesh computations) the results indicate that the former is a good indication of the latter.

On regular meshes, TTGC schemes forγ = 0.01 andγ = 0.05 and G/RK3 retain third-
order on triangles and even higher on quadrilaterals. The TTG4A scheme performs slightly
worse (with a computed order of 2.7) and the LW scheme gives a surprisingly low order of
0.8. Note, however, that a regression fitting using the three finest meshes yields a value of
1.3 for LW and 3.9 for TTG4A on quadrilaterals, indicating that the coarser meshes do not
give a good indication of the error convergence for the rapidly varying initial conditions
that were used in this test.

On perturbed meshes we find that while the LW scheme retains its order, the FE schemes
give reduced convergence rates. The loss in order is smaller for TTG4A and more pro-
nounced for the other FE schemes, especially for G/RK3 on quadrilaterals, where the
convergence curve flattens on the two finest meshes. We believe that this loss of accuracy is
due to the creation of high-frequency oscillations on perturbed meshes which are damped by
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FIG. 16. Convection of a Gaussian pulse on a perturbed 512 quad mesh: (a) exact solution, (b) LW, (c) TTG4A,
(d) TTGC(0.01), (e) TTGC(0.05), (f) G/RK3.

dissipative schemes like LW or TTG4A, but less so by TTGC or G/RK3. This is illustrated
in Figs. 13 and 14 on a regular and perturbed 512 mesh: although solutions on the perturbed
mesh show high frequency oscillations, the pulse is still accurately described. This is also
illustrated in the 3D view (Fig. 16) of the same 512 perturbed mesh: the LW, TTG4A, and
TTGC(0.05) are nearly free of these high-frequency oscillations, while TTGC(0.01) and
G/RK3 show a nearly unifrom high-frequency perturbation. It can also be seen that despite
the relatively good mesh resolution, the LW scheme displays a low frequency phase error
(illustrated by the large undershoot behind the pulse). The results for the two TTGC schemes
also illustrate how the coefficientγ directly measures the dissipation of the scheme: results
on perturbed meshes are better with TTGC(0.05) than with TTGC(0.01) simply because the
former damps the high frequency perturbations more effectively, while the low frequency
resolution remains similar. For LES, we shall see that there is a fine balance between the
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FIG. 17. L2 error versus mesh spacing on regular quadrilateral meshes for convection of a Gaussian pulse.

need to have some dissipation at high frequencies but not to overly dissipate these modes.
Indeed, practical computations indicate that it is wise to have some dissipation in order to
avoid any nonlinear instabilities that may become apparent before the turbulent viscosity
itself comes into play.

4.2. Nonlinear Test

In this second test, an incompressible, rotational vortex is combined with the uniform
convection of the previous test-case in the same domain. The pressure and the density are

FIG. 18. L2 error versus mesh spacing on perturbed quadrilateral meshes for convection of a Gaussian pulse.
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FIG. 19. L2 error versus mesh spacing on regular triangular meshes for convection of a Gaussian pulse.

uniform over the domain. The initial solution att = 0 reads

ρ = ρ0,

9 = 90 exp(−((x − x0)
2+ (y− y0)

2)/τ 2),

u1 = u0

(
1− ∂9

∂y

)
,

u2 = u0

(
1+ ∂9

∂x

)
,

FIG. 20. L2 error versus mesh spacing on perturbed triangular meshes for convection of a Gaussian pulse.
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FIG. 21. Convection of a vortex on a perturbed 213 hexahedral mesh:90= 0.2, τ = 0.25/
√

2.

u3 = u0,

p = p0− ρ0u2
0
92

τ 2
,

E = p

ρ(γ − 1)
+ 1

2

(
u2

1+ u2
2+ u2

3

)
,

with ρ0= 1, u0= 1, γ = 1.4, p0= ρ0/M2
0γ, M0= 0.125, x0= y0= 0.5.

This vortex should be convected without dissipation, and so we expect the solution at
time t = n (n integer) to correspond to the solution at timet = 0. However, the Jacobians
of the Euler fluxes are no longer constant, since a rotation of the fluid is involved. Having
locally linearised the Euler equations as in the previous section (i.e., using the product
approximation for the fluxes and assuming that the Jacobians are constant within each cell),
this test should demonstrate to what extent this assumption perturbs the solution.

Figure 21 shows the second velocity component along the line (0, 0.5, 0)-(1, 0.5, 0) at
time t = 1 for90= 0.2 andτ = 0.25/

√
2 in the case of a perturbed 213 hexahedral mesh.

We see that TTGC(0.01) and TTG4A give comparable results, while the FV/LW scheme
already shows an important dissipation error. Figure 22 shows the solution att = 1 along the
same cut but for a vortex with narrower cross-section (with approximately 2/3 the resolution
of the previous vortex) and the same velocity amplitude (90= 0.155 andτ = 0.16/

√
2). As

this vortex contains higher Fourier modes, the dissipative error is more evident with TTG4A
than with TTGC(0.01), while the FV/LW scheme has totally dispersed and dissipated the
vortex. On this test, G/RK3 and TTGC(0.05) give results very similar to TTGC(0.01).

4.3. Homogeneous Isotropic Turbulence (HIT) Decay without Viscous Terms

This test is a basic test for unsteady LES computations. A synthetic three-dimensional
turbulent flow (initialised with a Passot–Pouquet spectrum) is advanced in time on a periodic
213 hexahedral mesh. The CFL number is 0.7 and the mean and maximum Mach numbers
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FIG. 22. Convection of a vortex on a perturbed 213 hexahedral mesh:90= 0.155, τ = 0.16/
√

2.

at timet = 0 are 0.05 and 0.12, which are typical values for low Mach number tests. We de-
fine a convective CFL number CFLconv≈ Mach

1+MachCFL, where CFL≈ (|u| + c)1t/1x is the
Courant Friedrich number based on the velocity|u| + c of the fastest acoustic waves in the
simulation, and1x is some length scale associated with the smallest element of the mesh.
In this case the mean and maximum convective CFL numbers are approximately 0.033
and 0.075.

In this first test we do not make use of an LES model, nor do we consider the effect
of laminar viscosity, so the calculation can be performed by solving the Euler equations.
Consequently, we should see a progressive accumulation of energy and vorticity at high
frequencies. In particular, the theory of turbulence [21] predicts a (monotonic) exponential
growth of enstrophy as time increases, where enstrophy is defined as

enstrophy=
∫

V
(∇ × u)2 dV.

Figures 23 to 27 show the time evolution of the mean enstrophy and kinetic energy for
the various schemes described above (curves in solid line). We see that TTG4A dissipates
enstrophy monotonically (after the initial growth), while TTGC and G/RK3 lead to the
exponential growth predicted by the theory. FV/LW also predicts the growth but with an
important decrease of enstrophy prior to it.

This test already indicates that TTG4A, and to a lesser extent FV/LW and TTGC(0.05),
may be too dissipative to carry out LES calculations, as their intrinsic dissipation already
acts as an ad hoc LES viscosity model. This behaviour is in line with the Fourier analysis of
Subsection 2.3, which shows that the TTGC scheme has substantially less high frequency
dissipation for low CFL numbers. Since turbulent motion is convected numerically at the
convective CFL number defined above, we may expect such behaviour for all low Mach
number cases (say Mach< 0.3). It is the acoustic waves that are convected at the true
CFL number, and it is only high frequency acoustic waves that will be adversely effected
by large dissipative and dispersive errors, although these are often less important in LES
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FIG. 23. HIT test for FV/LW scheme.

computations. Even then the time step is limited by the smallest elements of the mesh and
so acoustic waves are effectively convected at low CFL numbers over the majority of an
unstructured mesh for many practical applications.

4.4. Homogeneous Isotropic Turbulence Decay with LES Viscosity Model

Starting from the same solution and the same mesh as above, we now add the laminar
and turbulent viscosity terms. The turbulent eddy viscosity model employed is the filtered
Smagorinsky model [22]. Since we are using a (bi-)linear finite-element approximation
for which viscous terms can not be approximated to third-order accuracy [23], we make
use of a standard second-order approximation for these terms (using one-point quadrature

FIG. 24. HIT test for 2JacTTG4A scheme.



TAYLOR–GALERKIN SCHEMES FOR LES 365

FIG. 25. HIT test for 2JacTTGC(0.01) scheme.

for simplicity), although we retain third-order for convective terms. This approximation is
justified in the context of LES calculations where important simplifications have already
been used to derive the LES model itself.

In Figs. 23 to 27 we present the evolution in time of mean enstrophy and kinetic energy
for this second test (dashed lines). As the initial solution contains no energy at the highest
frequencies, vorticity and energy are fed into these modes through the energy cascade
mechanism, which explains the initial growth in enstrophy from timet = 0 to t = 6. As
vorticity at high frequencies grows, turbulent viscous terms start to become effective in
dissipating these quantities. We note that theoretical [13] and experimental results predict
a t−1.4 law for the asymptotic decay in kinetic energy.

FIG. 26. HIT test for 2JacTTGC(0.05) scheme.



366 COLIN AND RUDGYARD

FIG. 27. HIT test for 2JacG/RK3 scheme.

By comparing the evolution of mean enstrophy and kinetic energy with and without
LES viscous terms it is evident that the dissipation rate of kinetic energy is not entirely
dictated by the LES viscosity model, as it would be ideally. Instead, it is dependent on the
numerical dissipation that is inherent to the convective scheme. For G/RK3, TTGC(0.01),
and TTGC(0.05), which show good agreement with theory, it can be concluded that the
LES model is responsible for most of dissipation of energy, and not numerical viscosity.
Meanwhile, the results for TTG4A show nearly identical evolutions of enstrophy and kinetic
energy for both the viscous and inviscid tests, indicating that the LES model has a marginal
effect compared to numerical dissipation. This is confirmed by the evolution of the mean
turbulent viscosity in Fig. 28: the mean level for TTG4A is significantly smaller than for

FIG. 28. Time evolution of mean turbulent viscosity for HIT test with turbulent viscosity model.
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TABLE II

Total CPU Time per Iteration on a 213 Periodic Mesh

Hexahedra Hexahedra Tetrahedra Tetrahedra
Scheme CPU time (in s) CPU time/LW time CPU time (in s) CPU time/LW time

FV/LW 0.82 1. 1.57 1.
2JacTTG4A 2.23 2.7 3.00 1.9
2JacTTGC 2.04 2.5 3.02 1.9
4JacTTGC 2.36 2.9 3.5 2.2
nJacTTGC 1.73+ 0.157n 2.1+ 0.19n 2.55+ 0.237n 1.6+ 0.15n
2JacG/RK3 2.44 3.0 4.00 2.5

other schemes. The FV/LW scheme shows intermediate behaviour between these two trends.
TTGC(0.01), TTGC(0.05), and G/RK3 give approximatively at−1.5 law for the kinetic
energy decay while TTG4A and FV/LW give powers of−1.55 and−1.63, respectively,
which again indicates excessive dissipation.

This second test confirms that G/RK3 and TTGC(0.01) behave much better than FV/LW
and that TTG4A is definitely too dissipative for LES applications. The difference observed
between TTGC(0.01) and TTGC(0.05) indicates that as the parameterγ is increased, the
scheme becomes more dissipative at high frequencies and it too becomes less suitable
for LES.

5. COMPUTATIONAL COST

In order to give an approximate idea of computational cost, we measure the total CPU
time per iteration for the different schemes studied on the 213 periodic mesh. Note that all
of the schemes were developed within the same computational code, and so all common
components are shared. By the same token, no optimisations that may beparticular to a
given scheme have been performed, although we are reasonably confident that in most cases
the figures give a realistic assessment of relative cost.

Table II shows CPU times for hexahedral and tetrahedral elements. The third and fifth
columns give CPU times normalised by the cost of the basic FV/LW scheme described in
[15]. For both element types we see that the TG schemes (with 2 Jacobi iterations) are 1.9 to
3 times slower than FV/LW, which indicates that the improvement brought by these schemes
can be obtained at a very reasonable cost for practical calculations. Tetrahedral calculations
are found to be 1.3 (for 2JacTTG4A) to 1.9 (for FV/LW) slower than the calculation on
hexahedra for the same number of unknowns: this is explained by the increased number
of cells treated with tetrahedra (40000 versus 8000) since each hexahedron is replaced by
5 tetrahedra for the regular grids considered here. TTGC can be seen to be substantially
faster than G/RK3 (there is between 20 and 32% of overhead for G/RK3), while TTGC and
TTG4A have comparable CPU times. Since TTGC(0.01) and G/RK3 give similar solutions
on simple test cases, TTGC will be preferred on practical calculations for its lower cost, as
well as offering increased robustness on irregular complex meshes.

6. CONCLUSION AND FUTURE WORK

In this article the construction of various Taylor–Galerkin (TG) finite-element schemes
has been described and a new TG scheme, TTGC, has been proposed. Our goal was to
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develop practical schemes for LES, and so methods that are particularly suitable for im-
plementation within an unstructured parallel solver have been derived. This involved ap-
proximation of the integrals that occur in the discrete space-time equations in a manner that
is substantially cheaper than well-known quadrature techniques, while preserving discrete
conservation. The resulting schemes recover the exact finite-element formulation on regular
elements, and tests carried out on perturbed elements indicate that, although approximate,
the method still gives good results.

Using these formulations, the TG schemes considered have been demonstrated on three-
dimensional linear and nonlinear advection test-cases and were seen to give substantially
better results than the second-order Lax–Wendroff and centred three-step Runge–Kutta
schemes. Tests were also performed for all basic element types (namely quadrilaterals,
triangles, tetrahedra, prisms, pyramids, and hexahedra) and indicate similar properties for
all of these, as well as for hybrid meshes. Mesh refinement studies indicate that the TG
schemes presented do give third-order accurate solutions for convective terms on regular
meshes, although decreased orders are evident on perturbed meshes, especially for the less
dissipative of them (G/RK3 and TTGC(0.01)). A detailed study of this phenomenon has
not been carried out, as this is beyond the scope of the present paper—our aim here was to
describe a practical method with minimal computational overhead compared with existing
low-order schemes.

For the LES applications that are of primary interest to us, we have established that the
ETG and TTG4A schemes are too dissipative, despite the fact that they offer improved
phase accuracy over standard second-order schemes. Our new TG scheme, TTGC, es-
sentially retains the same structure as standard TG schemes although it results in lower
dissipative errors at high frequencies, comparable to those given by the three-step Runge–
Kutta–Galerkin scheme (G/RK3). In essence, the new approximation offers a compromise
between existing TG schemes and G/RK3 and, at least for the problems we are interested
in, strikes a balance between the dissipation that is needed to maintain nonlinear stability on
irregular meshes, the requirements of LES, and the need to minimize computational costs.

Future development will be driven by activities on LES calculations of turbulent com-
bustion in complex geometries, which will be reported elsewhere.

APPENDIX: CONSERVATION PROPERTY OF TG SCHEMES

We present here the practical definition of conservation adopted in our work and the proof
that our schemes fulfill this criterion. The definition of conservation involves consistently
approximating the integral form of the PDE over the domain

∫ t+1t

t

∫
Ä

ut dV dt= −
∫ t+1t

t

∫
∂Ä

F dS dt. (54)

For our finite-element discretisation, we shall demand that

∫
Ä

Un+1−Un

1t
dV = −

∫
∂Ä

F dS, (55)

where
∫
∂Ä

F dS is some (as yet undefined) approximation of the global flux integral.
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For the schemes of interest,∫
Ä

Un+1−Un

1t
dV =

∫
Ä

∑
i

8i

(
Un+1

i −Un
i

1t

)
dV =

∑
i

Vi R
n+1
i , (56)

with Vi the mass-lumped coefficient of nodei ,

Vi =
∫
Ä

8i dV =
∑

j

Mi j . (57)

We note that∑
j

Vj R
n+1
j =

∑
i

∑
j

Mi j Rn+1
j =

∑
i

∫
Ä

Rn+18i dV =
∑

i

Hn
i =

∑
c

∑
i∈Äc

Hn
i

∣∣
c
, (58)

whereHn
i |c is the restriction to cell c of the RHS operator of the TG scheme considered.

The condition (55) then reads∑
c

(∑
i∈Äc

Hn
i

∣∣
c

)
=
∫
∂Ä

F dS, (59)

and since the mesh is arbitrary, and assuming our approximate surface integrals cancel out
across internal faces, ∑

i∈Äc

Hn
i

∣∣
c
=
∫
∂Äc

F dS. (60)

The RHS operatorHn
i is a linear combination of the operatorsL andLL. A sufficient

condition onL andLL for Eqs. (60) and (59) to be satisfied is then∑
i∈Äc

Li (U
n)|c =

∫
∂Äc

F dS, (61)

∑
i∈Äc

LLi (U
n)|c = 0. (62)

In the linear case, it is straightforward to show that by summing Eq. (43) over the nodes
of the mesh gives Eq. (61), where∫

∂Äc

F dS= Vc(∇ · F)c = Vc(∇ · F)FV. (63)

In the bi/tri-linear case, summing Eq. (52) over the nodes of the element gives∑
i∈Äc

Li (U
n)|c = Vc(∇ · F)FV+

∑
j

Fj T̄

(∑
i

2̃i j

)
.

The first term on the right-hand side is the finite-volume divergence term obtained in the
linear case. Summing Eq. (51) over the nodes of the element proves that the second term in
parentheses cancels out,∑

i

2̃i j =
∫
Ä̃c

(∑
i

8i

)(
∇8 j − 1

Ic

∫
Ä̃c

∇8 j dV

)
dV

=
∫
Ä̃c

∇8 j dV − 1

Ic

(∫
Ä̃c

1dV

)(∫
Ä̃c

∇8 j dV

)
.
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As we arbitrarily chose
∫
Ä̃c
= Ic, the right-hand side is zero and Eq. (61) is satisfied.

Finally, equality (62) is proven by using definition (36) and (38) ofLL,

∑
i∈Äc

LLi (U
n)|c = (A, B,C)

(∑
j

Fj

(∫
Äc

∇8 j

(∑
i

∇8i

)T))
.

As
∑

i∇8i = 0, (62) is satisfied, and the scheme is conservative for bi/tri-linear elements.
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